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Distributed Nonlinear Trajectory Optimization
for Multi-robot Motion Planning

L. Ferranti∗, L. Lyons∗, R.R. Negenborn∗, T. Keviczky∗, J. Alonso-Mora∗

Abstract— This work presents a method for multi-robot
coordination based on a novel distributed nonlinear model
predictive control formulation for trajectory optimization
and its modified version to mitigate the effects of packet
losses and delays in the communication among the robots.
Our algorithms consider that each robot is equipped with
an on-board computation unit to solve a local control
problem and communicate with neighboring autonomous
robots via a wireless network. The difference between the
two proposed methods is in the way the robots exchange
information to coordinate. The information exchange can
occur in a (i) synchronous or (ii) asynchronous fashion. By
relying on the theory of the nonconvex alternating direction
method of multipliers, we show that the proposed solutions
converge to a (local) solution of the centralized problem.
For both algorithms, the communication exchange
preserves the safety of the robots, that is, collisions
with neighboring autonomous robots are prevented. The
proposed approaches can be applied to various multi-robot
scenarios and robot models. In this work, we assess our
methods, both in simulation and with experiments, for the
coordination of a team of autonomous vehicles in (a) an
unsupervised intersection crossing and (b) a platooning
scenarios.

Index Terms— multi-robot systems, optimization and op-
timal control, collision avoidance, fault-tolerant control.
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I. INTRODUCTION

Every year thousands of people are involved in transporta-
tion related accidents with fatal consequences [1]–[3]. A key
component to address this issue and reduce the amount of
fatalities in the current transportation and mobility network
is the development of connected and automated mobility
solutions [4], [5]. These autonomous vehicles will soon be
part of our daily life, transporting goods or people to their
destinations. One of the main challenges is that of gener-
ating collision-free trajectories that coordinate these traffic
participants, to ensure the safety of the vehicles and of the
humans. Formally, this is a multi-robot coordination problem.
Through the use of a central coordinator or by relying on the
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Fig. 1: Overview of the proposed approaches for multi-robot
coordination based on the use of distributed NMPC.

communication among neighboring robots, these algorithms
should require only a small amount of information (e.g.,
current pose, and speed of the neighbors) to decide on a safe
navigation strategy. In addition, while distributed algorithms
are more resilient to faults in the communication strategy
(compared to the centralized approaches that have one single
point of failure), these algorithms strongly rely on the com-
munication among the robots. Hence, they are still vulnerable
to communication faults (e.g., packet loss and delays) that can
compromise the overall safety of the coordination scheme.

This paper presents two methods to solve a centralized
multi-robot coordination problem in a distributed fashion, that
is, without the need of a coordinator:
● A synchronous algorithm, that is, a distributed nonconvex

trajectory optimization method to coordinate multiple
robots with guarantees on the convergence to the solution
of the original centralized coordination problem;

● An asynchronous algorithm, that is, a modified version of
the aforementioned distributed algorithm to account for a
more realistic communication network. The algorithm is
able to deal with non-blocking exchanges of information
among the robots, communication delays and packet
losses, while retaining guarantees on the convergence to
a suboptimal solution of the original centralized problem.

Figure 1 summarizes the approaches we propose, highlighting
the differences with the original centralized approach (in which
a central coordinator computes a feasible path for all the
robots) and in the way the robots communicate.

We evaluate our methods for the coordination of a team of
autonomous vehicles in different scenarios (that would usually
be treated with different tailored solutions), namely, an unsu-
pervised intersection crossing scenario and a platoon formation
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scenario. Finally, we present a practical implementation of
the method using a team of small-scale autonomous cars.

Much research in mobile-robot motion planning focuses on
safety, that is, how to avoid collisions with other robots and
with the environment (e.g., road boundaries, lanes). Classical
methods for coordination in complex dynamic environments
either use reactive strategies [6]–[11], assume a priority or-
der [12], or rely on scheduling [13]–[17] to coordinate robots.
These methods do not explicitly consider the interactions
between robots and moving obstacles. Learning-based meth-
ods [18]–[22] can be used to consider these interactions at
the cost of losing interpretability. Constrained-optimization
approaches [23]–[26] can be used to consider interactions
without losing interpretability, but at potentially high compu-
tational cost. Our proposed framework for multi-robot coor-
dination fits in this last category and it aims at reducing the
computational load by using decomposition methods.

Several authors proposed centralized optimization-based
approaches for multi-robot coordination and intersection ne-
gotiation ( [27]–[30] to mention a few). In contrast, our
algorithms do not require a central coordinator and are dis-
tributed via a communication channel. Several authors also
provided distributed solutions. In [31], the authors proposed
a decentralized design in which the robots compute their
decisions sequentially. The approach is based on scheduling,
invariant sets, and optimization-based techniques. In [32], the
authors proposed a parallelizable approach under a given
precedence order. Collisions among the robots are avoided
by sharing the arrival and departure times at the intersection.
In [33], an extension of [32] is provided to handle rear-end
collisions. Our design does not require a precedence order
and does not require a discretization of the environment,
operating directly in continuous space. In [34], the authors
proposed a distributed model predictive control (MPC) design
that relies on constraint prioritization and uses semidefinite
programming relaxations to deal with the nonconvexity of
the collision avoidance constraints. In [35], [36], the authors
rely on a decentralized linear MPC formulation for collision-
free formation control. In [37]–[40], the authors proposed
distributed algorithms that rely on the alternating direction
method of multipliers (ADMM). In [38], the authors use
distributed linearized MPC to coordinate autonomous vessels
in the presence of environmental disturbances. In [39] dis-
tributed MPC problems are used for cooperative multi-vessel
system. Compared to the aforementioned approaches, we rely
on nonlinear MPC (NMPC), that is, we do not linearize the
system dynamics or the collision avoidance constraints, but
we consider directly the nonlinear dynamics and nonconvex
constraints in the problem formulation to reduce the conser-
vatism in the behavior of the robots. Furthermore, we provide
asymptotic convergence guarantees by relying on the theory
of nonlinear ADMM (NADMM) [41]. The solver presented
in [41] cannot be trivially applied to our coordination problem.
NADMM only handles linear coupling constraints among the
robots, while our coordination problem introduces a nonlinear
coupling caused by the presence of nonconvex collision avoid-
ance constraints. We reformulate our coordination problem in
an appropriate form that both preserves the solution of the

original coordination problem, and is suitable for NADMM.
We achieve this goal by introducing (i) a new set of decision
variables that act as shared variables among the robots and
(ii) a new set of constraints that handle the consensus among
the robots. The resulting optimization problem is the sum of
smaller (one for each robot) linearly coupled subproblems that
can be solved using NADMM. We show that the proposed
synchronous algorithm converges to a locally optimal solution
(due to the nonconvex nature of the problem) of the coordi-
nation problem (Theorem 1).

Our approach relies on MPC. In recent years, MPC has
gained attention in applications with fast dynamics, such as
automotive [27], [42]–[44], waterborne transport [24], [45],
[46] and aeronautics [47], [48] thanks to great improvements in
terms of solvers used for online optimization [49]–[53]. MPC
is also a promising technique for fault-tolerant control. Several
authors showed the ability of MPC to deal with actuator faults
[48], [54]–[56]. Less attention has been given to the potential
of MPC to deal with communication faults. The authors of [57]
propose a decentralized convex MPC design to deal with
delays for a leader-follower formation control problem. The
authors of [58] propose a distributed path following control
strategy to explicitly account for time-varying communication
delays based on event-triggered communications. The authors
of [59] propose a distributed strategy for the regulation
problem of nonlinear systems subject to data losses based
using a Lyapunov-based MPC formulation. Compared to
the previous approaches, our coordination strategies strongly
rely on the NADMM framework to shape the interactions
among the robots. In addition, we tailored the distributed
coordination strategy to mitigate packet losses and delays by
leveraging the MPC ability of generating predictions over
a finite time horizon. Within the ADMM literature, some
strategies have been proposed to deal with delays and packet
losses (e.g., [60], [61]). Compared to these approaches, we
exploit the features of the MPC design to provide predictions
and we use predictive optimization techniques to compensate
for the packet loss and delays in the ADMM framework.In
addition, we rely on the NADMM [41] strategy able to deal
with the sum of nonconvex functions. The solver proposed
in [41] and our synchronous algorithm, however, require
the robots to exchange information at given synchronization
points. This assumption can be unrealistic for practical
robotics applications, in which the communication among
the robots can be affected by delays or packet loss. This
paper proposes a tailored version of the NADMM solver (our
asynchronous algorithm) that leverages the ability of NMPC
to provide predictions to compensate for imperfect behavior
of the solver due to communication faults.

We build on [43], which relies on the model predictive con-
touring control (MPCC) formulation proposed in [62], [63],
to design the local trajectory generation strategies. Compared
to [43], we look at the distributed multi-agent planning and
coordination problem. We focus on the algorithms required
to find a solution for such a problem using NMPC combined
with NADMM to distribute the problem.

We presented a preliminary version of the synchronous
algorithm in the conference paper [24]. Compared to [24], we
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completely revise the NADMM strategy and provide theoret-
ical guarantees for the synchronous algorithm. Furthermore,
we design the asynchronous algorithm to deal with a more
realistic communication framework among the robots. Finally,
we extend and update our simulation results with a comparison
with the centralized version of the local motion planner applied
to the control of a team of autonomous vehicles.

The paper is structured as follows. Section II provides
preliminary information to make the paper self-contained,
including the NADMM strategy presented in [41] and the
centralized NMPC problem formulation. Sections III and IV
describe the synchronous and asynchronous designs, respec-
tively. Section V presents an evaluation of the proposed
methods. Finally, Section VI concludes the paper.

II. PRELIMINARIES
A. Nonlinear Alternating Direction Method of Multipliers

Given that our approach relies on the nonconvex alternating
direction of multipliers (NADMM) presented in [41], this
section provides some useful definitions and a short overview
of NADMM. The functions introduced in this section are
meant to explain the generic version of NADMM.

In this paper, all the vectors are indicated with a bold
symbol. The 2-norm of a vector u is ∥u∥. Let R̄ = R ∪
{∞} and Range(A) indicate the extended-real line and the
range (column space) of a matrix A ∈ Rm×n, respectively.
Furthermore, let eigmin(A) indicate the minimum eigenvalue
of a matrix A ∈ Rn×n. Finally, let domf be the domain of a
function f ∶ Rn → R̄. The following definitions are also useful:

Definition 1 ( [41]): Given f ∶ Rn → R̄ and a linear oper-
ator A ∈ Rm×m, the image function (Af) ∶ Rm → [−∞,+∞]
is defined as (Af)(σ) ∶= infx∈Rn{f(x)∣Ax = σ}.

Definition 2 ( [64]): A function f(x) is lower semicontin-
uous at x̄ if lim infx→x̄ f(x) = f(x̄).

Consider the generic problem below:

minimize
ξ∈Rnξ ,y∈Rny

Jξ(ξ) + Jy(y) (1a)

subject to: Aξ +By = b, (1b)

where Jξ(ξ) ∶ Rnξ → R and Jy(y) ∶ Rny → R̄ are proper
and lower semi-continuous functions of ξ and y, respectively.
These cost functions can be nonconvex. A ∈ Rnb×nξ , B ∈
Rnb×ny , b ∈ Rnb define the linear coupling constraints (1b).

The augmented Lagrangian associated with Problem (1) is
defined as follows:

Lρ(ξ,y,λ) ∶=Jξ(ξ) + Jy(y) + ⟨λ,Aξ +By − b⟩+ (2a)
ρ

2
∥Aξ +By − b∥2, (2b)

where ρ > 0 is a penalty parameter and λ ∈ Rnb is the
Lagrange multiplier associated with the constraints (1b).

To solve Problem (1), the NADMM algorithm iteratively
solves the following steps [41]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ+/2 = λ − ρ(1 − β)(Aξ +By − b),
ξ+ ∈ argminLρ (⋅,y,λ+/2) ,
λ+ = λ+/2 + ρ(Aξ+ +By − b),
z+ ∈ argminLρ(ξ+, ⋅,λ+),

(NADMM)

where β ∈ (0,2) is a tuning parameter. NADMM is an iterative
algorithm that converges to a (locally) optimal solution of
Problem (1) only asymptotically.

Section III details how to reformulate the multi-robot coor-
dination problem to fit in the structure of Problem (1) (see
Problem (13)) and solve it in a distributed fashion (Algo-
rithms 1 and 2).

B. Model of the robots

We consider autonomous robots whose dynamics can be
represented by the following nonlinear discrete-time model:

xi(t + 1) = fi(xi(t),ui(t)), i ∈ IV , (3)

where xi(t) ∈ Rni represents the state of Robot i, ui(t) ∈ Rmi

represents the associated control command, fi ∶ Rni ×Rmi →
Rni represents the (possibly) nonlinear dynamics of Robot i,
V is the number of robots, and IV ∶= {1, . . . , V }.

The following assumptions hold throughout the paper:
Assumption 1: The robots communicate only within a com-

munication radius cr, that is, there exists a communication link
between Robots i and j if and only if Robot i is in the commu-
nication radius of Robot j. In practice, the robots will use the
information concerning the neighboring robots only when they
are within the planning horizon of the local motion planner.

Assumption 2: All the robots within the communication
radius are fully autonomous and communicate with the neigh-
boring robots (i.e., we do not consider mixed traffic scenarios,
in which we have non-communicating robots).
The model description above is general and can be employed
in different multi-robot applications (e.g., for the coordination
of autonomous cars, ships, drones, and aircraft). In case of
continuous-time systems, the model above can be obtained by
discretization of the continuous-time dynamics, as illustrated
in Section V.

C. Collision avoidance constraints

This section introduces the strategy used to represent each
robot and formulate the collision avoidance constraints in the
coordination problem. We use a strategy similar to the one
proposed in [43] for autonomous cars.

Without loss of generality, we explain the representation
for two robots, namely Robots i and j1. Figure 2 depicts the
proposed approach from the perspective of Robot i. Robot
i is represented as ndisc discs of radius r centered in ph

i

(where we used p to indicate the position on the (x, y) plane
in the body frame, h ∈ Idisc ∶= {1,2, . . . , ndisc}, and ndisc is
the number of discs used to describe the robot). From the
perspective of Robot i, Robot j is represented as an ellipse
with semi-major axis aM (longitudinal direction) and am
(lateral direction), respectively.

Collision avoidance is achieved when the discs used to
represent Robot i and the ellipses representing the neighboring

1We note that the method applies in a straightforward way to the case of
V ≥ 2 robots by including additional constraints for each of the other robots
analogously to the case for Robot j (as depicted in Figure 2 where we added
a third robot, namely Robot k, to represent a more general scenario).
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Fig. 2: Robots’ representation for collision avoidance from the
perspective of Robot i: the circles represent Robot i, while the
ellipses describe its neighbors.

robots do not intersect. As proposed in [43], using an approxi-
mation of the Minkowski sum2 between each disc representing
Robot i and the ellipse representing the neighboring robot,
the collision avoidance constraints between Robot i and the
neighbor j have the following analytical representation:

(R(ηj)(ph
i − pj))

T [
1

(aM+r)2 0

0 1
(am+r)2

]R(ηj)(ph
i − pj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ch
i,j

> 1,

(4)
where R(ηj) is the rotation matrix of Robot j (ηj is the
orientation of Robot j according to the reference frame
indicated in Figure 2). The constraints above require the pose
of Robot j, that is, pj and ηj . In the following, we assume
a homogeneous team of robots (i.e., same am, aM , and r)
to simplify the notation. Nevertheless, the approach can be
easily extended to a heterogeneous team of robots, by adding
as additional shared information aMj , amj and ri.

D. Problem Formulation

Our approach relies on MPC. The MPC controller
repeatedly solves an optimization problem based on the
available plant measurements to compute the optimal
sequence of control commands over a finite time window,
called the prediction horizon. Only the first control command
of this sequence is applied to the plant in closed loop in a
receding-horizon fashion [65].

Following [43] and extending it to the context of multi-robot
coordination, we formulate a trajectory-generation problem in
which the controller aims to minimize the error with respect
to a path dependent on the path parameter ϕ, rather than a
time-dependent reference signal. This formulation allows the
controller flexibility in the definition of the state variables (they
are not constrained to follow a time-dependent trajectory).
Furthermore, this formulation allows the controller to select
a desired reference velocity without compromising the choice
of the reference path.

2An over-approximation can be achieved following the approach proposed
in [26].

The goal of the proposed coordination algorithm is to
minimize the sum of the following costs3:

Ji ∶= qvx∥vref
i − vxi∥2 + eT

iQeei, (5)

where vxi is the velocity in the longitudinal direction, vref
i is

the desired speed, qvx and Qe are tuning parameters, and the
error ei ∈ R2 for Robot i is defined as follows:

ei ∶= [eli eci ]
T
. (6)

The quantities eli and eci are the longitudinal error (i.e., the
error in the path’s tangential direction) and the contouring er-
ror (i.e., the error in the path’s normal direction), respectively.
At time step t, the longitudinal error is defined as follows:

eli ∶= − [cosηi(ϕi) sinηi(ϕi)] (pi − pref
i ) , (7)

where ηi(ϕi), pi, and pref
i are the heading of the path, the

position on the (x, y)-plane of Robot i, and the reference
path on the (x, y)-plane, respectively. Similarly, at time step
t, the contouring error is defined as follows:

eci ∶= [sinηi (ϕi) − cosηi (ϕi)] (pi − pref
i ) . (8)

More details on the derivation of the longitudinal and contour-
ing errors can be found in [43].

At time t, our goal is to solve the following trajectory
optimization problem:

min
xi,ui,ϕi,i∈IV

V

∑
i=1
(

N−1
∑
k=0

Ji(xi(t+k),ui(t+k))+

Ji(xi(t+N))) (9a)

s. t. :xi(t + k + 1) = fi(xi(t + k),ui(t + k)), (9b)

xi(t) = xinit
i , (9c)

Gi(xi(t + k),ui(t + k)) ≤ gi, (9d)

chi,j(t + k) > 1, j ≠ i, h ∈ Idisc (9e)

where constraints (9b)-(9e) are for i = 1, . . . , V and k =
1, . . . ,Ni. In Problem (9), xi and ui represent the pre-
dicted evolution of the state and control command of Robot
i, respectively, over the prediction horizon N . The vector
xinit
i ∈ Rni represents the current measured state of the robot.

Furthermore, (9d) indicates the constraints on the states and
actuators of the robots (with Gi and gi constant matrices
of appropriate dimensions). In addition, (9e) represents the
collision avoidance constraints (4) between Robots i and j
(j ≠ i) along the prediction horizon N . These constraints
are present only if the neighboring robots are within the
communication radius cr.

The goal of each robot is to minimize the local Ji (9a).
The navigation must comply with (i) the dynamics of each
robot (expressed by the dynamic constraints (9b)) and (ii)
the physical constraints on the state and control command of
each robot (expressed by the constraints (9d)). Furthermore,
the navigation must comply with safety requirements of col-
lision avoidance with the other robots moving in the same

3To simplify the notation, we omit the time and robot dependency when it
is clear from the context.
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area (expressed by the nonconvex constraints (9e) detailed in
Section II-C).

Assumption 3: We assume that the coordination prob-
lem (9) has a feasible solution.

Problem (9) requires a central coordinator to compute the
appropriate control command for all the robots in the network
(this processing unit can be required for example to handle
an intersection). First, the central coordinator has to solve the
predictive control problem online (i.e., within the sampling
time of the fastest robot). This can cause problems for the scal-
ability of the proposed approach, when the number of robots
increases. Second, having a central coordinator means that all
the robots must be willing to share information concerning
their dynamics, constraints, and objectives with the central
node. This might be problematic for vehicle manufacturers,
which may not be open to share information concerning their
products. To efficiently solve Problem (9) we need to remove
the requirement of having a central coordinator by allowing the
robots to communicate in a tailored manner with each other.

III. SYNCHRONOUS DISTRIBUTED NMPC
In the following, Section III-A describes our proposed

reformulation of Problem (9). Then, Section III-B shows how
to decompose the problem to solve it using NADMM. Finally,
Section III-C provides convergence guarantees when using the
proposed decomposition to coordinate the robots.

A. Reformulation of Problem (9)
In Problem (9) the only coupling among the different robots

is represented by the collision avoidance constraints (9e).
Each robot needs a local copy of the predicted position and
orientation along the prediction horizon of its neighboring
robots to solve its local optimization problem. A simple strat-
egy could be that each robot computes its control command
using the predicted position and orientation that its neighbors
computed at the previous time instant (i.e., no ADMM). This
strategy can be suitable when the robots’ global paths are
not in conflict (e.g., independent highway lanes). When the
robots need to reach consensus on a safe path (e.g., to cross
an intersection or change multiple lanes) relying only on
previously computed paths can be unsafe. In these scenarios,
tailored information exchanges can guarantee collision-free
trajectories (if a feasible solution of the centralized problem
exists), as discussed later in the section.

We propose the following reformulation in which each
Robot i (i = 1, . . . , V ) solves the following problem:

min
zi,ph

i

N

∑
k=0

Ji(zi(t+k)) (10a)

s. t. : (9b)-(9d), (10b)

pj∣i(t+k)=ph
i (t+k)−∆ph

i,j(t+k), j≠i, h∈Idisc (10c)

pi(t+k)= p̄h
j (t+k)−∆ph

j,i(t+k), j≠i, h∈Idisc (10d)

ηi(t + k) − ηi∣j(t + k) = 0 (10e)

ph
i (t+k) = Rh(zi(t+k))zi(t+k), h ∈ Idisc (10f)

ch(i,j)∣i(t + k) > 1, j ≠ i, h ∈ Idisc (10g)

ch(j,i)∣i(t + k) > 1, j ≠ i, h ∈ Idisc, (10h)

Local decision variables

Local copies of Robot j

Local definition of the 
collision avoidance constraints

Local decision variables

Local copies of Robot i

Local definition of the 
collision avoidance constraints

Robot i Robot j

Consensus
variables

Fig. 3: Summary of the local and shared information after the
introduction of the consensus constraints.

where constraints (10c)-(10h) are for k = 1, . . . ,N and zi ∶=
[xT

i , u
T
i ]

T
(to simplify the notation we omit the fact that the

input is applied from 0 to N − 1). Note that in the problem
formulation above zi and ph

i are local variables (i.e., variables
whose values are computed on board of Robot i), pj∣i is the
local information that Robot i has of Robot j’s position and
pi∣j is the local information that Robot j has of Robot i’s
position. Similarly, ηi∣j is the local information that Robot
j has concerning the orientation of Robot i. In addition,
∆ph

i,j are newly introduced consensus variables that carry the
information of the distance between each disc representing
Robot i and Robot j. Similarly, ∆ph

j, i are consensus variables
carrying the information of the distance between each disc
representing Robot j and Robot i. Furthermore, we modify
the notation (ch(i,j)∣i instead of chi,j) for the collision avoidance
constraints in (4) to indicate that ch(i,j)∣i uses pj∣i instead of
pj (ηj∣i instead of ηj) and that ch(j,i)∣i uses pj∣i instead of pj .
In the remainder of the paper we use

ξi ∶= [zT
i (p1

i )T . . . (ph
i )T]T ∈ Rnξ

as the vector of local variables.
Compared to Problem (9) the local problems above contain

additional constraints, namely, Constraints (10c)-(10e). In
these constraints, the newly introduced vectors ∆ph

i,j , ∆ph
j, i,

and ηj∣i are used to break up the coupling between Robot i and
its neighbors caused by the collision avoidance constraints.
The introduction of these variables (and of the associated
constraints) is fundamental to create a linear coupling among
the robots and reformulate the trajectory optimization problem
in standard NADMM form (1). Finally, Constraint (10f)
indicates the nonlinear relationship (highlighted by the matrix
Rh(zi(t+k))) between the center of the discs describing each
robot and the center of the robot itself.

Figure 3 highlights the local decision variables, copies, and
collision avoidance constraints of each robot (Robots i and j).
Furthermore, the figure highlights the global variables that our
design uses to ensure consensus among the robots.

The introduction of the nonlinear local equality con-
straints (10f) and a new set of local variables might seem
redundant. Their introduction, however, is fundamental for
NADMM, which requires linear coupling constraints [41].
Without them, the constraints in (11) would be nonlinear in
the decision variables and the convergence results proposed
in [41] would not hold. Recently, promising ADMM versions
with nonconvex coupling constraints have been proposed (e.g.,



6

[66]), but the convergence results are still limited and cannot
be employed for our application.

We rewrite in a more compact notation Constraints (10c)-
(10d) as follows:

Aiξi(t + k) +Biyi(t + k) = bi(t+k), k = 1, . . . ,N, (11)

where

yi ∶= [∆p1T

i,j . . .∆phT

i,j∆p1T

j, i. . .∆phT

j, i]
T
∈ Rny , (12a)

Ai ∶= [ET
i . . .ET

h F . . . F ]T ∈ RnA×nξ , (12b)

Bi ∶= [−I . . . −I I . . . I]T ∈ RnA×ny , (12c)

bT
i ∶= [(pj∣i)T . . . (pj∣i)T(p1

j∣i)T . . . (ph
j∣i)T] ∈ RnA , (12d)

where Ei selects the components of ph
i from the vector of

local variables ξi, and F selects the components of pi from
ξi. We can rewrite Problem (10) in a more compact notation
as follows:

min
ξi,yi

N

∑
k=1

Ji(ξi(t+k)) (13a)

s. t. : ξi ∈ Fi (13b)
Aiξi(t + k) +Biyi(t + k) = bi(t+k), (13c)

where Fi ∶= {zi∣ (9b)-(9d), (10f), and (10g)-(10h) are satis-
fied} is the feasible region of Robot i.

By taking the sum of Problems (13) for all the neighboring
robots, we recover the original MPC formulation (9). For
example, if we consider (10c) for two neighboring robots
(namely, robots i and j) the following holds:

(i) ∶∆ph
i,j(t+k) = ph

i (t+k) − pj∣i(t+k), j≠i, h∈Idisc (14a)

(j) ∶∆ph
i,j(t+k) = ph

i∣j(t+k)− pj(t+k), j≠i, h∈Idisc (14b)

If both (14a) and (14b) are satisfied it means that pi∣j = pi and
pj∣i = pj . Hence, Problem (13) (and consequently Problem
(10) is a reformulation of Problem (9).

The fundamental difference between the two problems (i.e,
Problems (13) and (9)) is that the sum of the local prob-
lems (13) can be solved in a distributed fashion by relying
on the NADMM solver [41].

B. Problem Decomposition using NADMM

Algorithm 1 shows the proposed control strategy that relies
on NADMM (steps 5-17) [41]. Neighboring robots have to
communicate to evaluate and exchange the locally computed
values4 of ∆ph

i,j (steps 11 and 15). Furthermore, compared to
the strategy proposed in [41], we have to deal with constraints
in the inner problems solved by the local robots (step 9). Each
robot needs an optimizer able to solve the local constrained
nonconvex problems (such as FORCES Pro [52]). In this re-
spect, the augmented Lagrangian associated with Problem (13)
for all the robots is defined as follows:

L(ξ,y,λ) ∶=J(ξ)+⟨λ,Aξ+By − b⟩+ ρ
2
∥Aξ+By − b∥2,

4The values of ∆ph
i,j are shared among the robots, but for their computa-

tion we can use the computation units onboard of each dedicated robot.

Algorithm 1 Synchronous Distributed NMPC.
1: for i = 1, . . . , V do
2: Given ξ0i , y0

i , λ0
i , ρ, β ∈ (0,2].

3: end for
4: for t = 0,1,2, . . . do
5: for s = 1, . . . ,itermax do
6: for i = 1, . . . , V each robot computes in parallel do
7: Update bi.
8: λ̂

s
i ← λs

i − ρ(1 − β)(Aiξ
s
i +Biy

s
i − bi).

9: ξs+1i ← argminξi∈Fi
Li (ξi,y

s
i , λ̂

s
i ).

10: λs+1
i ← λ̂

s
i + ρ(Aiξ

s+1
i +Biy

s
i − bi).

11: Robot i sends/receives updates to/from neighbors.
12: end for
13: for i = 1, . . . , V each robot computes in parallel do
14: ys+1

i ← according to (15).
15: Robot i sends/receives updates from neighbors.
16: end for
17: end for
18: for i = 1, . . . , V each robot computes in parallel do
19: Select ui(1) and implement it.
20: Update ξ0i .
21: end for
22: end for

where J ∶= ∑V
i=0 Ji, ξ ∶= [ξT

0 . . .ξ
T
V ]T ∈ Rnξ(V ), y ∶=

[yT
0 . . .y

T
N ]T ∈ Rny(V ), b ∶= [bT

0 . . .b
T
V ]T ∈ RnA(V ) and A,B

are defined accordingly from (11). Notice the similarity with
Eq. 2. The update of the global variables is performed in Step
14 of Algorithm 1 as follows:

∆ph
i,j ∶=

(ph
i − pj∣i) + (ph

i∣j − pj)
2

, ηj∣i ∶= ηj . (15)

Their values are obtained by taking the values of ∆ph
i,j com-

puted according to the mean of the measurements available to
Robots i and j, respectively, at iteration s of the solver for all
h. Note that to perform the update above, it is sufficient for
Robot j to communicate the difference ph

i∣j −pj and ηj along
the prediction horizon for all h ∈ Idisc.

At time 0 each robot will need to initialize y0
i . We assume

that the first time a robot enters in the communication radius
of another robot, it will communicate the required current
information to initialize the first element of the vector (which
is a parameter in the local optimization problems). Then,
the ADMM steps will be used to optimize the consensus
variables online.

The vector bi varies along the prediction horizon, but it
is not a decision variable. We can precompute its values
as follows. Robot i receives/updates iteratively the values of
∆ph

i,j , ∆ph
j,i, ηi, and pi. Hence, bi can be derived from (11)

based on the values of zi(t + k) computed at the previous
problem instant, but using the updated values of ∆ph

i,j ,∆ph
i,j .

We could proceed differently using the values of pj and ph
j

computed by the neighboring robots. This will lead to an
ADMM strategy with more than two sets of variables to update
and requires each robot to wait for all the neighboring robots
to update their decision variables in a sequential fashion.
Our strategy allows all the robots to proceed in parallel with
their local computations. Furthermore, the direct use of pj

and ph
j means that the ADMM strategy operates directly on

the collision avoidance constraints (that can be converted to
equality constraints using nonconvex indicator functions in the
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cost). This leads to nonlinear equality constraints that might
compromise the convergence of the ADMM algorithm.

Algorithm 1 requires the robots to exchange information at
given synchronization points (steps 11 and 15). At step 11,
each robot sends its own predicted position and orientation,
that is, it sends to its neighbors a vector of size 3N × 1. At
step 15, each robot sends to its neighbors a vector of size
2hN × 1 according to the definition of ∆phi,j .

C. Convergence of Algorithm 1
Given the similarity of Algorithm 1 with the nonconvex

ADMM proposed in [41], we can rely on the theoretical analy-
sis of [41] to provide convergence guarantees for Algorithm 1.

Theorem 1: Let β ∈ (0, 2) and ρ > 2L/ eigmin(BTB),
L > 0. Assume that a feasible solution of the centralized
coordination problem (9) exists. Then, Algorithm 1 converges
asymptotically to a (locally) optimal solution of the coordina-
tion problem.

Proof: To prove the theorem, we show that the problem
we want to solve (i.e., Problem (13)) satisfies the assumptions
needed to use the convergence analysis of NADMM provided
by [41]. Then, we prove the theorem by using the fact that
Problem (13) is equivalent (by construction) to Problem (9)
when the constraints (15) are satisfied at equality.

We proceed as follows. First, we show that J ∶ Rnξ → R̄
and matrices A,B,b (in (13c)) are such that:

(i) (AJ) is a lower semicontinuous function:
Note that in our problem, compared to the framework
of [41], we have to consider that ξ ∈ F . We
can reformulate the inner problem associated with
ξ using the indicator function δF , which is 0
if ξ ∈ F and ∞ otherwise. In particular, define
F ∶= {ξ ∈ Rnξ ∣f(ξ) ≤ 0}, with f(ξ) deriving from
the definition of the constraints (9b)-(9d), (10f), and
(10g)-(10h). Then, the image function (AJ) will be
(AJ)(σ) = infξ{J(ξ)+ δF (f(ξ)) ∣Aξ = σ} Given that
F is closed, δF is lower semicontinuous. Consequently
the sum of lower semicontinuous functions is still lower
semicontinuous [67] and the above holds.

(ii) AdomJ ⊆ b +Range(B):
This holds given that our B matrix in (12c) has full
column rank.

The above shows that our problem satisfies the assumptions
in [41] for the convergence of NADMM.

Second, for ρ large enough, under the (nonrestrictive)
assumption that the subproblems in Algorithm 1 admit a
feasible (not necessarily unique) solution, we can establish the
convergence of our algorithm. By using Theorem 5.6 in [41] in
our framework, the following holds for the iterates generated
by Algorithm 1:

(i) The residual (Aξk + Byk − b)k∈N vanishes with
mini≤k ∥Axi +Byi − b∥ = O(1/

√
k).

(ii) All accumulation points (ξ,y,λ) of (ξk,yk,λk)k∈N sat-
isfy the KKT conditions 0 ∈ ∂(ξ)+ATy,0 ∈ BTy,Aξ +
By = b and attain the same cost J(ξ,y), this being the
limit sequence (Lρ(ξk,yk,λk))k∈N.

Hence, our synchronous algorithm converges asymptotically
to a locally optimal solution.

Algorithm 2 Asynchronous Distributed NMPC.
1: for i = 1, . . . , V do
2: Given ξ0i , y0

i , λ0
i , ρ > 0, β ∈ (0,2], ϵi ≥ 0.

3: end for
4: for i = 1, . . . , V in parallel do
5: for ti = 0,1,2, . . . do
6: Check current neighbors’ positions.
7: for si = 1, . . . ,itermax do
8: Check current neighbors’ positions.
9: if No updated information from the neighbors then

10: Use shifted neighbor’s information.
11: end if
12: Update bi.
13: λ̂

s
i ← λs

i − ρ(1 − β)(Aiξ
s+1
i +Biy

s
i − bi).

14: ξs+1i ← argminξi∈Fi
Li (ξi,y

s
i , λ̂

s
i , ϵi).

15: λs+1
i ← λ̂

s
i + ρ(Aiξ

s+1
i +Biy

s
i − bi).

16: Robot i sends updates to the neighbors.
17: Check for new neighbors’ information.
18: if No updated information from the neighbors then
19: Use shifted neighbor’s information.
20: Inflate collision-free region by ϵi (16).
21: end if
22: ys+1

i ← according to (15).
23: Robot i sends updates to the neighbors.
24: end for
25: Select ui(1) and implement it.
26: Update ξ0i .
27: end for
28: end for

IV. ASYNCHRONOUS DISTRIBUTED NMPC
Algorithm 1 proposes a strategy to solve the coordination

of multiple robots in a distributed way. The main limitation
of this algorithm is related to the amount of information
exchanged and idle time at every iteration of the solver.
Step 9 of Algorithm 1 requires the solution of a constrained
nonlinear optimization problem. Its solution might take a
different amount of time for each robot (depending on the
number of neighbors) for every iteration of the solver. In
addition, in a real setting, it might be problematic to ensure that
the robots are synchronized due to packet loss. To overcome
these issues, we propose a modified version of Algorithm 1
that allows asynchronous communications among the robots
and mitigates the effects of packet loss. The key insight for
this algorithm is to rely on the NMPC feature of providing
predictions to help the robots achieve consensus.

A. Proposed design
Algorithm 2 details our proposed asynchronous strategy.

The asynchronous NADMM strategy (steps 7-24) differs from
the one used in Algorithm 1 (steps 5-17) in the way the robots
exchange information. The synchronization steps 11 and 15
of Algorithm 1 are modified as described in the remainder
of the section (steps 8-11 and steps 18-21 of Algorithm 2,
respectively). The other steps of the algorithm are the same
as in the synchronous case. Loosely speaking, the idea is the
following. At every si iteration of the NADMM scheme each
robot is responsible to broadcast its updated information to
its neighbors, but each robot does not have to wait for its
neighbors to send data (we highlight this by using a subscript
i in the NADMM iteration counter). Every time the robot
reaches a synchronization point (steps 6, 8, and 17), it checks
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whether new information from the neighbors are available.
If not, the robot speculates that a packet might be lost and
initialize the mitigation procedure. The mitigation procedure
consists of two main steps, that are, the choice of a safety
parameter ϵi and the update of the neighbors’ trajectories.

1) Selection of the safety parameter ϵ: Each robot inflates
the collision region by a quantity ϵi proportional to the possible
error robot-i’s neighbours might have on the current position
of robot i to preserve safety. Specifically, ϵ is defined as (we
neglect the subscript i to indicate the robot):

ϵ = ns(tOPTvx) (16)

where tOPT is the time the robot spent to solve its local
subproblem, vx is the local longitudinal speed of the robot,
ns is the total number of missed synchronization points in
one NADMM iteration.

2) Update of the neighbors trajectories: Robot i continues its
local NADMM iterates by using the latest available predictions
of the neighbors. These predictions are shifted by the required
amount of steps to compensate for the asynchronous commu-
nications/packet losses (interpolating the end of the horizon
based on their predicted speed).

B. Convergence of Algorithm 2
In the following, we will show that despite the lack of

synchronous communication, Algorithm 2 converges to a
(suboptimal) local solution of Problem (9).

Theorem 2: Under the same assumptions of Theorem 1,
assuming no plant-prediction model mismatch, and under the
following boundedness assumptions:

1) tOPT < tsN (i.e., the solving time of the local optimiza-
tion problems is smaller that the length of the horizon)
and

2) ns < N (i.e., the number of consecutive packet losses is
smaller that the number of NMPC stages);

Algorithm 2 converges to a (locally) suboptimal solution of
Problem 9.

Proof: Trivially, if no packet loss or synchronization
delay occur Algorithm 2 converges to the same solution of
Algorithm 1.

Suppose that we have two robots, namely, Robots i and j.
The asynchronous behavior is caused by different local solving
times and packet losses. Under the assumptions of the theorem
the local solving times are bounded, as well as the packet
losses. In addition, the open-loop predictions will match the
closed-loop ones.

Suppose that at time instant t, Robot i is faster that robot
j to solve its local problem, that is tiOPT < t

j
OPT. When robot

i reaches the coordination checkpoint with robot j, it will
not find any updated information from Robot j (note, from
the perspective of Robot i, it does not matter whether there
was a packet loss or a smaller computation time). To proceed,
Robot i accounts for the additional distance it will cover due
to the smaller computation time by enlarging its collision
avoidance region by ϵi according to (16). In addition, by
using the latest information from Robot j (i.e., the information
received at time t − 1) shifted in time, Robot i optimizes

by speculating on the behavior of robot j. By using robot-
j predictions, Robot i is virtually synchronizing with Robot
j on a more conservative problem formulation that accounts
for different computation times and delayed information (due
to the packet loss). Similarly, when Robot j will reach the
synchronization point with Robot i, it will find the updated
information from Robot i (which already moved forward in
the optimization process). Given that robot i is not aware of
tjOPT, robot j enlarges its feasible region by ϵj to anticipate
possible collisions due to the mismatch. In addition, given that
Robot i already moved forward, Robot j will anticipate for its
local delay by using the shifted prediction of Robot i. Under
the boundedness assumptions of the theorem, thanks to the use
of the NMPC predictions to virtually synchronize the robots,
Algorithm 2 can be casted in a synchronous one. Compared
to the synchronous algorithm, however, Algorithm 2 solves
modified local-NMPC problems (with a more conservative
feasible region), whose level of suboptimality is proportional
to the computation time of the local subproblem and to the
number of packet losses.

C. Discussion
The proposed asynchronous strategy is tailored to the

NMPC framework. Without the use of the predictions to
virtually synchronize the robots, it would not be possible
to provide any guarantee related to the convergence of the
algorithm. In addition, we will show that the boundedness
assumptions required by Algorithm 2 are reasonable based on
the simulation results provided in Section V.

The strongest assumption we made is related to the no-
model-mismatch assumption. We will show in the simulation
and experimental results how the proposed algorithm performs
if this assumption does not hold (e.g., Figure 6.c or results
presented in Section V-D). In general, plant-prediction model
mismatches could be compensated by adding more complexity
to the NMPC prediction model to improve the quality of
the predictions and by using a more conservative choice of
the safety parameter based on the expected deviation of the
plant by the predicted trajectories. In addition, recall that
the proposed strategy operates at planning level. A low-level
controller can help to mitigate the effect of the plant-prediction
model mismatch.

Compared to an approach that only computes local paths
based on the previously computed neighbors’ predictions, our
asynchronous approach still allows the individual robots to
reach consensus based on the neighbors expected behavior.
In addition, by allowing multiple exchanges of information
within a sampling instant our algorithm is more resilient
to packet losses that can occur when exchanging a single
individual trajectory. That is, suppose that Robot i reaches
the first coordination checkpoint before the other robots. With
no ADMM exchanges, Robot i will miss updates from the
neighbors that might arrive just a few millisecond later. Thanks
to the multiple ADMM iterates, within the same sampling
instant, Robot i can go back to the checkpoint and check again
for available information.

The asynchronous approach allows the individual robots to
mitigate packet losses and to use non-blocking information



FERRANTI et al.: DISTRIBUTED NONLINEAR TRAJECTORY OPTIMIZATION FOR MULTI-ROBOT MOTION PLANNING 9

exchanges. Compared to the synchronous implementation,
however, this approach leads to more conservative behaviors
due to the preventive enlargement of the collision-free region
of the individual robots by ϵ. The proposed mitigation strategy
is currently based on the local information the robot has and by
relying on communication. This is to show and discuss the be-
havior of the proposed algorithm in the worst-case scenario of
minimal sensor information. Alternatively, we could combine
the information received from the other robots with local on-
board sensor information (e.g., camera and lidar) to refine our
estimate and further improve the resilience to communication
faults. Otherwise, an additional detection module or a model of
the packet loss for the selected communication network might
help reduce the conservatism in the solution. Finally, the local
solvers will always introduce a delay due to different tOPT.
By using a solver with real-time computation guarantees (e.g.,
for convex distributed MPC formulation there are variations of
gradient descent that can provide these guarantees [47], [68]),
we could better anticipate this delays.

V. NUMERICAL RESULTS
This section shows the performance of our algorithms to

control a team of autonomous vehicles, both in simulation
and with real-life experiments.

To described the vehicle dynamics in the local MPC formu-
lations, we used the following kinematic bicycle model [69]:

ẋ = vx cos(η), ẏ = vx sin(η), η̇ =
vx tan(ω)

L
(17a)

v̇x = ax, ȧy = (2axω + vxδ)
vx
L
, ω̇ = δ, (17b)

where the states are the position of the vehicle p ∶= [xy]T,
the orientation η, the velocity in the longitudinal direction vx,
the lateral acceleration ay , and the angular velocity ω. The
commands are the longitudinal acceleration ax and the steering
change rate δ, respectively. L is the length of the vehicle.
Based on these quantities, we derived am, aM , and r.

The commands and the states are subject to the following
constraints: ax ∈ [ax, āx], δ ∈ [δ, δ̄], vx ∈ [vx, v̄x], ay ∈
[ay, āy], η ∈ [η, η̄], and ω ∈ [ω, ω̄]. The values of bounds
are reported in Table I for both the simulation environment
and the experimental platform. In the reminder of the section
we compare the performance of Algorithms 1 and 2 with the
one of the centralized approach. For the comparison, we made
the following assumptions:

1) the communication radius is sufficiently large that each
vehicle is aware of the position of the neighbors from
the beginning of the experiment;

2) (only for the simulations) there is no model mismatch
between the MPC prediction model and the plant model,
that is, we assume that both models are discretized
at 0.1 s and the planned input is applied to the plant
instantaneously.

These assumptions are needed to have a fair comparison with
the centralized approach, whose computation time will be too
large for a more realistic implementation. Later in the section
we will relax these assumptions (also in simulation) for the

Quantity Unit Simulation Experiment

ax m/s2 -2 -2

āx m/s2 6 6

δ̄ = −δ rad/s 0.5 0.5

āy = −ay m/s2 3 3

η̄ = −η deg 30 30

vx m/s 0.1 0

v̄x m/s 15 3

L m 4 0.4

vref m/s 10 0.75

N samples 20 30

ρ - 0.001 0.01

TABLE I: Constraint bounds and relevant quantities used for
the simulations and for the experiments.

asynchronous design to show how it performs in the presence
of model mismatch and smaller communication radius.

We tuned the centralized algorithm in order to ensure that
the coordination has a feasible solution (to satisfy the assump-
tions of the theorems). Then, we kept the same tuning for
both the synchronous and asynchronous algorithm (see Table I.
In addition, we set the ADMM iterations of the synchronous
algorithm to 10 to show how it can reach the accuracy of the
centralized one with a sufficiently large number of iterations
(recall that ADMM ensure convergence only asymptotically)
and we set the ADMM iterations of the asynchronous one
to 2 to work with performance close to real-time. We could
reduce the number of iterations of the synchronous algorithm
by enlarging its feasible region to account for the early
termination of the ADMM solver. However, we want to show
first how the synchronous algorithm solve the original problem
in practice. Then, later, to evaluate the computation time of
the synchronous algorithm, we set the number of iterations
to 2 to compare with the asynchronous one and we enlarged
the feasible region by tsv

ref m to compensate for the early
termination of the solver.

We relied on FORCES Pro [52] to solve the local nonconvex
optimization problems. For the simulations, the algorithms are
implemented in MATLAB R2017b running on a Windows OS
with an Intel (R) Xeon (R) CPU @3.60 GHz. Each vehicle
runs on an independent MATLAB worker and communicates
with the other vehicles using the message passing algorithm
supported by MATLAB. For the synchronous algorithm, we
enforced the synchronization with barrier functions. For the
asynchronous implementation, we allowed each worker to
broadcast its information with a time-stamp to have non-
blocking interactions. Both the unpredictable optimization
times and the communication strategy will introduce ran-
dom packet losses/asynchronicity. We do not explicitly model
packet loss. Each time a robot reaches a synchronization point,
if no information is available we assume that the information
is lost and the robot moves forward according to the strategy
proposed in Algorithm 2. In the remainder of the section we
will depict the vehicles as colored rectangles. In addition, the
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global path that the vehicles are following will be represented
in dashed lines, whose color matches the ones of the associated
vehicle. Furthermore, we will represent the trajectory that each
vehicle will follow along the horizon at time t with solid lines,
whose color matches the one of the associated vehicle. A video
accompanies the paper [70].

A. Uncontrolled Intersection Crossing with 4 Vehicles

1) Comparison without model mismatch: Figure 4 compares
the centralized design with the distributed approaches. All
the three approaches are able to cross the intersection. The
asynchronous implementation, however, converges to a slightly
different solution compared to the synchronous and centralized
ones. This is caused by the limited number of iterations we
used for the ADMM strategy of the asynchronous algorithm
to reduce the computational overhead. In addition, the syn-
chronous algorithm is able to recover the solution of the cen-
tralized approach despite the distributed implementation. Both
the synchronous (second row of Figure 4) and asynchronous
(bottom row of Figure 4) approaches are able to preserve safety
(no collision during the coordination) thanks to the local hard
collision avoidance constraints and the regularization term in
the augmented Lagrangian that enforces consistency between
the local subproblems. For the asynchronous implementation
we run multiple (≈ 100) instances of the proposed scenario to
test the robustness of the approach to asynchronous commu-
nications and packet losses. Thanks to the adaptive selection
of the safety parameter ϵ the algorithm preserved safety in all
the experiments.

Figure 5 shows the changes in the safety parameter ϵ during
the simulation depicted in Figure 4. Note that around 30 s,
the ϵ values of the blue and green vehicles have a small
increase. This is because the computation time of the local
solutions sharply increases due to the increase in the number of
active constraints along the prediction horizon (the robots are
approaching the intersection and the coordination should be
much tighter). Afterwards, the values slightly decrease because
the robots decrease their speed to cross the intersection,
reducing the predicted distance they plan to cover between
two time steps.

2) Comparison with and without safety parameter ϵi: Fig-
ures 6.a and 6.b show the importance of the safety parameter
ϵ required by the asynchronous algorithm according to Theo-
rem 2. As Figure 6.a shows, without ϵ, due to the presence of
delays and packet losses the algorithm is not able to guarantee
collision-free trajectories (as the third and fourth columns
show).

3) Comparison with model mismatch: Figure 6.c shows the
performance of Algorithm 2 in a more realistic setting. In
particular, we consider a model mismatch between the plant
and the prediction model, that is, the plant is discretized at
0.01 s while the prediction model is discretized at 0.1 s. This
means that while the planner is computing a feasible trajectory
the vehicles keeps using the previously computed commands
to compensate for the lack of new information. In addition,
we considered that the vehicles can only communicate within

a communication radius of 100 m (we selected this range
according to a recent study on VANET communication tech-
nologies [71]). Note that the despite the model mismatch and
the limited communication range, Algorithm 2 is still able to
find a suitable crossing strategy. Note that the safety parameter
ϵ also adapts compared to the behavior of ϵ without model
mismatch (as Figures 5 and 7 depict).

4) Coordination time: Table II provides a comparison of
the coordination time of the three algorithms over 11 runs
of Scenario 1. Note that the proposed asynchronous strategy
outperforms the synchronous and the centralized approach
in terms of computation time. The 90 percentile metrics
shows that the asynchronous planner returns a solution within
0.05 s, almost an order of magnitude smaller compared to
the synchronous and the centralized methods that need 0.6
and 0.3 s, respectively. Note that the large coordination
times of the synchronous algorithm are mostly due to the
synchronization overhead. If no synchronization overhead is
present, the synchronous algorithm will perform similar to the
asynchronous one in terms of coordination times.

B. Platooning with 4 Vehicles

1) No model mismatch: Figure 8 compares the centralized
design with the distributed approaches in the platoon formation
scenario, that is, Scenario 25. We compared the algorithms
with no model mismatch and with an infinite communica-
tion radius. We selected this experiment to show how the
asynchronous algorithm can some time be over conservative
if a large number of packet losses occur or the vehicles
go heavily out of sync (we lowered the worker process
priority to worsen the performance of the algorithm). Note
that for this scenario, the synchronous algorithm shows again
similar performance to the centralized one. The distributed
algorithms are able to coordinate the vehicles to merge into
a platoon formation and later split to proceed on different
lanes. Concerning the asynchronous algorithm, the obtained
solution is more conservative compared to the synchronous
one. The conservatism can be explained by looking at the
safety parameter of the red vehicle (which is in front of the
green and the blue ones) depicted in Figure 9. The spikes are
associated with the substantial delay in the computation time
of the red vehicle that increases its safety region to protect the
neighboring vehicles from collision.

2) Coordination time: Table III provides a comparison of
the coordination time of the three algorithms over 11 runs
of Scenario 2. Similar to the previous scenario, the proposed
asynchronous strategy outperforms the synchronous and the
centralized approach in terms of computation time. The 90
percentile metrics shows that the asynchronous planner returns
a solution within 0.04 s, an order of magnitude smaller
compared to the synchronous and the centralized methods that
need 0.4 and 0.3 s, respectively.

5We only report the simulation results with no model mismatch for this
scenario, given that the results do not add additional information compared
to the previous ones.
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c) Asynchronous Algorithm (Alg. 2)

b) Synchronous Algorithm (Alg. 1)

a) Centralized Algorithm (baseline)

Fig. 4: Performance of Algorithms 1 and 2 (third row) compared to the centralized formulation in an intersection crossing
scenario (Scenario 1). The figure compares the behavior of the three methods at critical time instances of the coordination.

Centralized Design Synchronous Design (Algorithm 1) Asynchronous Design (Algorithm 2)

Max computation time (sec) 1.2168 1.9810 1.6663 1.6663 1.7756 0.1276 0.0778 0.0948 0.1235

90 percentile of the computation time (sec) 0.3277 0.5931 0.5946 0.5946 0.5792 0.0427 0.0337 0.0337 0.0391

Mean of the computation time (sec) 0.2283 0.2164 0.2150 0.2150 0.2152 0.0315 0.0276 0.0272 0.0296

TABLE II: The table compared the performance in terms of overall time (synchronization plus online optimization times) of
the proposed distributed algorithms with the centralized one in the intersection crossing scenario (scenario 1). The times are
calculated for each vehicle and over 11 simulations.

Centralized Design Synchronous Design (Algorithm 1) Asynchronous Design (Algorithm 2)

Max computation time (sec) 0.6639 1.9769 1.9895 1.9895 1.9888 0.1209 0.080 0.1298 0.1015

90 percentile of the computation time (sec) 0.3278 0.3891 0.3451 0.3451 0.3476 0.0388 0.0322 0.0365 0.0360

Mean of the computation time (sec) 0.2350 0.1612 0.1572 0.1572 0.1501 0.0233 0.0247 0.0254 0.0229

TABLE III: The table compared the performance in terms of overall time (synchronization plus online optimization times) of
the proposed distributed algorithms with the centralized one in the platoon formation scenario (scenario 2). The times are
calculated for each vehicle and over 11 simulations.

C. Intersection Crossing with 8 Vehicles

Figure 10 shows a scenario in which 8 vehicles coordinate
at an intersection crossing scenario. As the figure shows,
the vehicles are able to successfully cross the intersection
without collisions by exchanging information according to
Algorithm 2. The tuning of the algorithm (e.g., values of N ,
ρ) is the same compared with the one used in the previous
simulations. However, due to the increasing number of neigh-
bors for each individual robot, the computation time of the

method increases (as Table IV shows) and it is approximately
three times slower than the same crossing scenario with just
4 vehicles. Notice, however, that the computation time is still
close to the sampling time of the system according to the
mean and 90 percentile results. In addition, we expect further
speed-up when running each of the vehicles on independent
machines (the computer used for the experiments has only 4
independent cores).
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Asynchronous Design (Algorithm 2)

Max computation time (sec) 0.6757 0.3783 0.3783 0.4494 0.4918 0.3657 0.5146 0.5173

90 percentile of the computation time (sec) 0.1253 0.1213 0.1213 0.1162 0.1234 0.1087 0.1119 0.1209

Mean of the computation time (sec) 0.1695 0.1523 0.1523 0.1468 0.1497 0.1485 0.1418 0.1485

TABLE IV: The table reports the optimization times of the proposed distributed coordination strategy (using Algorithm 2) in
an intersection crossing scenario with 8 vehicles. The times are calculated for each vehicle and over 11 simulations.

Fig. 5: Safety parameter ϵi (i = 1, . . . ,4) in Scenario 1. The
colors match the ones of the vehicles in Figure 4.

D. Experimental results

We tested Algorithm 2 using a team of three small-scale
autonomous vehicles. The vehicles are based on the Waveshare
JetRacer Pro AI® kit, a platform suited to replicate the be-
haviour of full scale vehicles. The vehicles use RC380 carbon
brushed motors for locomotion. The steering is controlled
by a E6001 servo motor. Wi-fi connectivity is provided by
a 2.4 GHz/5 GHz Dual-band Wireless AC8265 module. An
electronic speed controller (ESC) is used to interface the Jetson
Nano board with the driving motor and steering servomotor.
For our experiments we used a Motive OptiTrack® external
motion capture system to analyse the performance of the
motion planning algorithm alone. The algorithm runs on a
computational unit with a AMD Ryzen 7 5800H with Radeon
Graphics 3.20 GHz and Ubuntu 20.04. The commands are sent
to the robots using a dedicated ROS network.

The dimension of the map has been adapted to match
the lab space availability and the size of the mobile robots.
The weights used in the algorithm have been consequently
adjusted. Figure 11 shows the predicted trajectories (solid
lines) and the position of the robots (colored boxed) measured
by the motion tracking system for (a) a crossing scenario and
(b) a merging scenario at given time instances. The dashed
lines highlight the high-level reference path. The vehicles in
both scenarios are able to safely complete the maneuvers
without collisions. The computation time of the algorithm
is comparable to the results obtained in simulation, as Ta-
ble V shows. In addition, the effects of the asynchronous
communications are compensated by the activation of the
safety parameter during the maneuver, as shown in Figure 12.
A full video of the experiments is provided in [70]. These

experiments show the potential of the proposed scenario for
real-life applications and to deal with realistic communication
networks.

VI. CONCLUSIONS AND FUTURE WORK

We proposed two distributed local motion planners based
on nonlinear model predictive control (NMPC) for the co-
ordination of autonomous robots. The proposed algorithms
allow the robots to communicate and agree on a common safe
navigation strategy without the need of a central coordinator.
The two algorithms differ in the way the communication
among the robots is handled. In particular, the synchronous
distributed NMPC design allows for a synchronous exchange
of information among the robots and ensures convergence
to a (locally) optimal solution of the coordination problem.
The asynchronous distributed NMPC design allows for an
asynchronous exchange of information among the robots and
ensures convergence to a (locally) suboptimal solution of the
coordination problem.

We compared the proposed designs for the control of
autonomous vehicles at a crossing and in a platoon formation
scenario, both in simulation and with experiments. The asyn-
chronous algorithm was able to safely accomplish the planning
goals, while dealing with packet losses (caused by the robots
going out of synch during the coordination). In addition, the
asynchronous algorithm drastically reduced the local optimiza-
tion times and the communication overhead by an order of
magnitude, compared to a centralized implementation of the
coordination strategy and the synchronous algorithm.

The proposed algorithms are general and could be applied
for the distributed coordination of vessels, drones, or other
types of mobile robots. This is part of our future research.
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Fig. 10: Performance of Algorithm 2 in an intersection crossing scenario with 8 vehicles involved.
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